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1. INTRODUCTION AND STATEMENT OF THE PROBLEM

In the investigation of stability of a two-dimensional leminar flow
with respect to small disturbances, we describe a disturbance of the
stream function moving downstreem (in the direction of the x-axis) by the
"partial wave formula"

¥ = o(y)elalx-ct) (1.1)

and obtain then for the distribution of the disturbance amplitude o(y)
at right angles to the main flow the so-called stability dlfferentlal
equation of the fourth order

(U - c)(CP" - or,gcp), - U'o = I}'é(cp(h') - 2cr,2cp" + oc)"'cp) (1.2)

where U(y) designates the velocity profile of the basic laminar flow
In addition, we enforce certain boundary conditions, in the specific
case of the parsllel channel

e(x1) =0 @' (x1l) =0 (1.3)

*"Jber das Spektrum bei Eigenschwingungen ebener Laminarstromungen.”
Zeitschrift flir angewandte Mathemstik und Mechanik, vol. Bh no. 8 9,
August-September 1954, pp. 34h-357. T T e
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which express the fact that even the disturbéd flow adheres to the
bounding walls. In these eguations, the velocities U, and c are
referred to a velocity of reference Ub, furthermore, the lengths x,
¥, and 1/a to half the channel width' b, afd finally % the time t .to-
the time unit b/U,. The Reynolds number R7 is defined by

Ir ﬁ,\ | .'.!

Rl
v
The boundary-value problem consisting of differential equation and
boundary conditions determines, for each pair_of parameters o and' R,
a spectrum of an infinite number of eigenvalues c,. The associated -

disturbances (1.1) are damped when Im(t,) < 0, and asre excited when

Im(c,) > 0; o dis assumed to be pbsitile and real. A basic flow is

called stable for a value of R when %k 1€ ent;re eigenyalue spectrum

¢ps for all possible values of «, contains only damped disturbances. .
Thus the range of the Reynolds number is divided up into a region

of stability O < R< R¥ and a region Qf'instability R > R¥, which are _
separated from one another by the stability boundary R*

Since, in the literature published up till nQW'almost exclusively
neutral oscillations - at most, excited oscillatlons - have been investi-
gated, we shall investigate 1n the present reggrt, following a suggestion
of Prof. Dr. W. Tollmien, the entire spdctrum of the eigénvalues c, @&s
a function of o and R; for simplificstion, we shall emphasize the
dependence on aR. A general solution of thig problem 18 possible in
the following two special cases: (1) in the case U = const. which is
zquivelent to U = 0. We deal here with the “oscillatioms of a fluid
at rest" already treated by Lord Rayleigh. The solution "is possible in
the domein of elementary and transcendental functions. The second
special case concerns the rectilinear Couette flow U =y dinvestigated
by L. Hopf (ref. 5). The solution can be reduced to tabulated Bessel
functions. ' T ~

For more general velocity profiles :U(y), the eigenvalues ¢, can
be determined approximatively anelytically in the following limiting
cases:

I. In the limiting case aR — 0 for arbI%rary order n of the
eigenvalues cp

——

II. In the limiting case n — s for constant oR

III. In the limiting case oR —w for restricted order n.

u
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A continuous transformation of the three cases into one another
for constant subscripts is possible in the gbove named speclal cases
U=0 &and U =y. The assignment of subscripts of the eigenvalues c, -
can be made in the cases I and II according to increasing dam@ing, that
is, according to the rule —

Im(cn+l) < Im (o) (1.14-)

However, this rule is not always appliceble to the case IIT when the sub-
scripts used are to remain constant for continuous variation of o aund
R. .

The boundary-value problem formulated in (1.2), (1.3) is, generally,
not self-adjoint; thus, the reduction to the well-known statements and
estimates of the Sturm-Liouville theory is eliminated. The eigenfunc-
tions generally do not form an orthogonal system. They do form, however,
as 0. Haupt (ref. 3) has shown, under certain assumptions, & system of
functions that is complete with respect to each of the functions which
satisfy the boundary conditions (1.3) and are four times continuously
differentiable. This system of functions can be transformed into an
orthogonal system.

2. THE LIMITING CASES oR —» 0O FOR ARBITRARY ORDER n OF e

THE EIGENVAIUES c,, AND n -« FOR LIMITED oR ' -

As already found by Lord Reyleigh (ref. 8), the entire system of
eigenfunctions and eigenvalues in the case of the basic flow U =0,
that is, for a medium at rest, can be given as a closed system. Since
these eigenvalues are suitable for approximative representations in @ =~~~ =
the case of more general basic flows also, we shall derive them here
briefly. 1In the case of the basic flow U = 0, the stabllity dlfferenfih¢ T
equation (1.2) is simplified to e e

g(4) _ 262" & oo + 1aR - (0" - &®0) = 0 (2.1)

where we shall denote the elgenvalues by C, to distinguish them from —
the eigenvalues ¢ of the general stability dlfferential equatlon. -
The equation is solved by each of the functions 7T

sinh w -
-sinh o

(2.2

cosh

87(7) = cosh wy - cosh ay ~osh o

¢77(y) = sinh wy - sinh ay ———r
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if we put ' : P .

w2 =a2 - 4aR + C (2.3)

The part ®(*l) = O of the boundary conditions 1s identically satisfied.
The remsining boundsry conditions 4>'(+1) = 0 lead to the related branches

of the eigenvalue equation: -
o tanh a = o tanh w iri'thecé.seI
(2.4)
o coth @ = w coth w in the case II

The equations (2.4) have, for positive o, no rqote o outside the
imaginery axis of the complex w-plane. With o, also -w, is an eigen-
value assoclated with the same eigeni‘unction _ Thus it is sufficlent

to consider only the positive imaginary éigenva.lues _If we Qesignate
even eigenfunctions by even subscripts and odd eigenfunct:.‘.ons by odd
subscripts, the eguation (2.4) may have the solutions @gs Wos Wiy o o o
in the case I and w, Wz, g, « « . i,n the case IT. __."L_he elgenvalues

+ —

can always be made to form a monotonic sequence ’

o<P<d<cF<. . _

The assoclated eigenvalues C, are according to equation (2.3)

2
a® + aTxn _
Cp = —3mp—— - - (2.5)

They are, therefore, arranged in the order of ig_reasing damping. The
nth eigenvalue mgy be estimated upward and downward by

2 o . '
a® + n:2<-123 + %) < iaR . €y < br,2 <2 + l) (2.6)

From the representation (2.5), it follows that the eigenvalues ¢

become very large for oR -0 as well as for n’ ~ ®, The same bhehavior
occurs, also, for more general velocity profiles U(y) because the main
parts of the stebility differential equation (1.2) are then represented
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by the equation (2.1). We shall now express this train of thought more

accurately by subjecting the difference c¢ - C of the elgenvaelues ¢

to a more accurate estimate compared to the eigenvalue C of equa-
tion (2.1), for more general proflles With introduction of the differ-
ential operators - .

o] = u(e - o®) - e Me] - o' - ofe  we) - olM) - 2 4ty
(2.7)
the stability differential equation (1.2) may be written in the form

= 1 _7_.
aufo] = L] - 2= Nl
Correspondingly, equation (2.1) reads > (2.8)

afe] = - 2= N[o]-

-

Utilizing the fact that the operators M and N are self-adjoint, we
obtain from these two equations the relationship

(c - c)f+l o [o]ay = f " afolay (2.9)

If the normelization which is still open for @ 1is fixed by the rule

f_ﬂ CPM[sD] dy =/:l @M[Q:ldy . (2.10)

1

there follows, after introduction of the auxiliary quantities

+1 1 -
f oL[e]ay f+ oL[o - ¢ ay
Q=7 q = —=% - - (2.11)

f_l afolay f_:l @M[@]dyvv _ | _
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from equation (2.9) the representation = = = = -~ - o —

c-C=Q+4a = o - (2.12)

In this equation, C and Q may be regarded as known by virtue of the
functions ® represented in equations:(2.2). The eigenvalues Ch

have already been delimited in expression {2.6). For Q we obtain
directly the estimate

1 +L 1
Q=2 f U-dy+0<—> o] > 1 (2.13)
2 -1 0
In connection with a similtaneous estimate of the function ;
(9 - )" - &2(® - &), we obtain for q° = I ~
q = o<iJ‘LR-> for @& Lo ) (2.14)
w w .. -

If we substitute both into equation (2. 12}, we obtain,jwith conslderation
of equation (2.5) and expression (2.6), the two partial statements

cp -~ Cp = Qp + O(néﬁ l) for aR -0 end for éfgifrary order é
- _ (2.158)
A+l - = S E ) L cE
¢p -~ Cp = %~/ U - dy + O(%?) for n o® "fbr fixed aR '
=1 '
(2.15b)

The latter estimate indicates that the 5eiéen%é.'lue's cn of the stabillty

differential equation for sufficilently high order n f£inally tend toward
the elgenvalues Cp of the "zera flow" (with the real part increased by

the mean velocity of the basic flow). (Compare eq. (2.I).) A mutual

coordination of the eigenvalues ¢, to;the eigenvalues,_cn, however,

is by virtue of equation (2.15b), meaningful only due ta:the fact that
the difference IC n+l! of the approx1matlon eigenvalues comes out

considerably larger than the estimated remainder in eqpation (2.15b):
For, because of (2.5) and (2.6) _
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n
Cp - Cpy1 | 2 constent - (Eﬁ) (2.16)

is valid. It should be mentioned that F. Noether (ref. T, p. 239, for-
mile (28)) has already indicated an asymptotic representation for slightly
differently defined eigenvalues for unlimitedly increasing order, v
although only intimating an argument - which leads one to expect con-
siderable difficulties. - —_—

We mention, furthermore, an estimate for the eigenvalues c¢ indi-
cated by C. S. Morawetz (ref. 6, p. 580)

lc-cn'<A- (ar)-1/2 —

where c, 1is an approximative eigenvalue which (in our notation) is
determined by the equation

+1 - - e— = .
\[ _ on . _ )
Imf_l 1(U - e 'dy_\[a_a L

and corresponds more or less to our approximate eigenvalue C, intro-

duced in equation (2.1). In the sbove estimate of Morawetz, neither aR
nor n may become arbitrarily large; in the first case, the eigenvalues
would shift into the excluded neighborhood of c¢ = wCyl)(w = U; yl des-

ignates the wall), in the other case the estimate would become meaning-
less since the behavior of the quantity A for unlimitedly increa81ng
n is not given.

3. RECTILINEAR COUETTE FIOW. THE LIMITING CASE oR —

FOR FINITE ORDER n

In the special case of the basic flow at rest, U = O, the behavior
of the eigenvalues ¢, for unlimitedly increasing aR is described

by the formuls (2.5) in which the quantities w, no longer depend on

oR. In deviation from this law, there results for more general velocity
profiles a behavior like -
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r . -
cp - U(-1) = -2 for.aR o (3-%)

where the complex valued quantities Ih no longer degénd on aR. If

these eigenvalues are adjoined to the: eigenvalues in equation (2.15s),
by comtinuous transition of a and &R, the ordering principle (1.4)
according to increasing damping is lost eveﬁ in special cases like the
rectilinesr Couette flow. If we theréfore desire that the subscripts
of the eigenvalues cp remain unchanged for continuous transformation

of the limiting ceses aR —» 0 and aR — @ ‘into one another, we must
actually carry out this procedure whieh presupposes a_genereal solution
of the eigenvalue problem or a solution which is approximete only inso-
far as the individuel eigenvalues still remain distinguishable from one
another. We succeeded in obtalining a: 'solution in this_sense only in the
special case of the rectilinear Couette flow. It willz therefore, form
the subject of the following section.

After insertion of the velocity profile U =y of the rectilinear
Couette flow into the stability differential equation (l 2), the latter
can be reduced, by means of the substitution

V=9 - Py — (3.2)

to the Bessel differential equation in the suxiliary form

¥ - [mR(y - c);+_¢«_€}i‘_lf =0 . (3.3)

In order to arrive, through the boundary coﬁaitions, at the eigenvalues,
we must invert equation (3.2) in the form ~

—— -

y ¥ . T N
sinh - _
o(y) = f () 2oy = 0) g (3.4)
-1 : . z :
The boundery conditions @(-1) = @'( l) =0 then are identicalxy satis-
fied; the remaining boundary conditions ¢(+I) = @' (+l) require
that the two equations ™ : T
W+l sink oy 1 . |
j wWy) - —5—dy =0 f ¥(y)cosh ay dy'= 0 (3.5)
-1 -1

hold.
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By means of the substitution

2
Yy - ¥, = €n with € = (aR)'l/5 and y, = c + io (3.6)
the differential equation (3.3) may be transformed into the differential
equation
i P (3.7)
2
dn
If
Y(n) and y  (n) (3.8)

are assumed to be two suiteble fundamental solutions of this equation,
and T_1s Ty is assumed to designate the values which are, because of

- equations (3.6), associated with the walls y = -1 and y = +1

2 2
. R CREEE" - IR RS ~ (3.9)

there follows from equations (3.5) the eigenvalue equation

1 sinh ae L1 A
Joy v - [y (n)eosn wen an -
1
+1 . +1
f \yII(q)s_ln_h_“—“:ﬂdq f y_(n)cosh aen dq = O (3.10)
e I
n-1 -1

For further treatment of this equation, the introduction of a
sequence of functions An(q) by the Laplace integrsl

2

nz+i
. ) =gl [0 7 A e (5.11)
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is advisable in which the path of 1ntegfation:;§' runs ifbﬁ infinity
to infinity in the manner drawn in figure 1. _The functions A,(7)
satlsfy the differential formula :

220 () | (3.12)
and the recursion formls

1Az +n- fpyg+n - Ap=0 (3.13)

by means of which all the functions An(n) and their integrals and
derivatives may be constructed recursively from the three basic functions

Ag(n) A1(n) -~ Ap(n) . (3.14)

The significance of these functions A (n) for the“stability prob-

lem lies in the fact that the two particular §olutions Qﬁ_the differential
equation (3.7) needed in the eigenvalue. equation (3. lof—éan be repre-
sented 1n the form

vo(n) = 4,(n) ¥pg(n) =€’ - '_Al(n - e 5--) (3.15)

Thet the differential equation (3.7) is satisfied follows from the
formulas (3.12) and (3.13). The linear independence of the two functions
follows from the fact that the Wronski determinant, whlch is constant of
course, does not disappear at the point 'n'= TV

The basic functions Aj(n) and Ay{n) = A;'(n) ha;é been numeri-

cally tabulated (in somewhat different nbtation) for a quadratic point
grid with the mesh width 0.1 within the &ircle ’ ' 6 —of the complex

n-plene by H. H. Aiken (ref. 1). The basic function Ag(q) = k/hAl(n)dn
can be determined from it by a numerical:integration T _

Outside of this table, the behavior. of the functlons An(n) may be
inferred from the asymptotic series representation

) 2 (872) dem Y o : (5.36

v/2
v=0 N
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which is valid for ln( -« in the angle space - %? +8%S arg 1 s %% -8

with arbitrerily small & > 0. According to H. Holstein (ref. 4), the
first coefficient of the series is

&n,0 - = _m@? é> (3.16a)

=1

The asymptotic series are obtainable directly from the Iaplace integral
(3.11) by means of Riemsnn's saddle-point method.

For the representation of the eigenvalues, the zeros Ty of the

function Ao(n) are necessary. An asymptotic caiculation of these zeros
|an >> 1 1s not possible directly by means of expression (3.16),

since the zeros would move out of the range of validity of this repre-
sentation. We avold this difficulty by spplying the second relations
obtainsble from the integral (3.11)

). gl Y
An<ﬂe —e? . AZ\n* - e (3.17)

(¥ = conjugate-complex values)

and

{ 2m g &t 3 b i EE)
Ag(n) +e 2 An<ne 2)re 2 e P/=myn)  (3.8)

where the polynomials P,(n) of the degree -n satisfy the same recur-
sion formula (3.13) C B

1« Ppyz + Ppyy + 0Py =0 (3.19)

with the initisl elements

PO =1 Pl =0 PE =0

Corbination of forrmlas (3.16) and (3.18) then yields the asymptotic
representation valid for jzl — o in the angle space ]arg z} <xn -5
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(? 1 5_ﬂ> cos<—§-_23/2 + 35)
Ag \ee 61 - — s (3.20)

\F; L Ok

Hence, there follows, for the zeros nNT of _E;Zn&) = 0 which, according

to equation (3.17), lie in pairs symmetrlcally with respect to the
straight line sarg = 5xn/6, the asymptotic representation

ln!n-2ﬁd3§}

5w
i[%—i ‘
g = (jn'n)z/5 . e o

The value of the lowest pair of zeros was ‘ealculated to be

1[%Ei£o.2f5§]
ny = 4257 - e & = - (3.212)

according to. the teble of Aiken (ref. 1). - -

For further treatment of the elgenﬂalue eqpation (3 lO), it 1s '—'
advisable to expand the functions sinh gen afnd cosh «en into their
Taylor series, and then to interchange the sumpation with_integration
which is justified by a theorem oOf Bromwich. (@ompare ref. 2, p. 398.)
The series obtained converge, according b0 theorems of the Iaplace trans-
formation, for each value of ae. If these ‘sefles are broken off after
the first terms, provided with residual terms, and substituted into the
eigenvalue equation (3.10), the latter is, for this reasch, and with
consideration of equation (3.17), simplified to S=

AO(”l) - Ao(”—;) Aé(‘”f) ) AS(’”fl) - =

= O(agez) for lnll S constant
AE (7]1) - AE(T]-:L) AS(-W{) - Ag(-nfl) o ___ - (3.2)4_)

What happens now when aR increases;beyond all limiEé, that is,
when € .tends toward 02 Because of the: relationship following from
equation (3.9), Nty = 2/e, at least!one of the two quantities : -

T 7y mst tend towsrd infinity for E'50,76h & parailel to the

real axis. Tt is sufficient to assume this regarding nl, because in

the other case everything would farm a mirror iﬁége with fespect to the
insginery axis of_the;q-plane_(as espentially occurs in the Couette flow
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where with C, also, =-C*¥ 1s an elgenvalue). With consideration of
the asymptotic behavior (eq. (3.16)), the eigenvalue equation (3.24)
then is simplified to

O(n-l) - 0(62) for € << 1 (3.25)

2(’1 1) g . e

From this formula, we recognize that 'q for € -0 mst tend

toward the zeros W of the function Ao(n) estimated in expres-

sions (3.21). We thus obtain for the eigenvalues c, with considera-
tion of equationes (3.9), the asymptotic representation

c+ 1= -enN + 0(62)
(3.26)
with Ty from AO(T]N> =0

Thus we have proved the previously given eigenvalue formula (3. l)
for the special case of the Couette flow.

In order to follow the variation of the eigenvalues ¢ over the
entire range O S aR < ©, we must go back to the eigenvalue equa-
tion (3.10) or its approximate form in equation (3.24), with the func-
tions Aj(n), Aj(n), Ay(n) to be assumed as known. We have accord-

ingly calculated the 12 lowest eigenvalues ¢ as functions of gR for
a fixed value o = 1 and represented them in figure 2. The variability
of the eigenvalue curves with o 1s only slight and becomes, for
instence, for oR —»» with € small of the order O{a2e2).

The eigenvalue spectrum of the rectilinear Couette flow has been
discussed already by L. Hopf (ref. 5). Hopf replaced, more or less on

the level of our eigenvalue equation (3.10), the solutions ¥ Vi

represented by him by Henkel functions of the order’ 1/3 - by the first
terms of their asymptotic series (3.16), whereby the eigenvalue equsa-
tion was simplified to an algebraic equation of auxiliary arguments and
circular and hyperbolic functions. However, since Hopf committed certain
errors in the asymptotic representations of the Hankel functions, his
results require partial corrections. Although these changes are hardly
significant for small values of aR, the values of, for instance, nN

in a formuls corresponding to (3.26) undergo a considerable change. The _
topological connection of the eigenvalue curves ¢ = c(a,cR) also
appears different to us from what it sppesred to Hopf. However, the
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qualitative plcture of the elgenfunctions, the physical conclusions
drawn from it, and the main result - that all oscillations are damped - T
remein the same. - )

L. THE LIMITING CASE oR - = FDR FINITE ORDER _n . FOR

SYMMETRICAL BASIC FIOWS

For a basic flow with symmetrical velocity profilq;
U(y) = 0(-y) | (4.2)

the stability differential egquation (l 2) always has a fundamental

system of four solutions wl, @2, ¢3% Qh so that _ e
52(Y) ﬁh(y) are even functions of ¥y

and = = -(4.2) i
5l(y) $3(y) are odd functions of y’

If a linear combinetion of these solutions is to satlsgy the boundary
conditions of-equations (1.3)-in the séquence 9(-1) =0, o'(-1) =
o(+1) = 0, ®'(+1) = 0, the following determinent, simplified with
consideration of the symmetries (4.2), must disappear: _
fl<'l) P5(-1) mé(-;) gy (-0)
Tl s Xi( s

% (-1) P5(-1) ma( 1) 1)
"q)l('l) -@3<-l) CPE( l) cp}_‘_( l)
B D SYD) —@h( -1)

~L

Since this determinant mey be written &s therproduct of the two- column
determinants

2

$3<f;> 62<-1; Py(-1)

)
~ S ~' = 1=0 (4.3)
) w3(-1) we(—;) ¢u(‘52_

'
+lo
1
¢
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one obtains, by equating one of the two factors to zero, one branch of
the eigenvalue equation each time. For this reason the eigenfunctions

can be either only even or only odd, with the respective eigenvalues ¢ -—
generally being different.

In order to srrive from these equations at asymptotic elgenvalue
formulas, we shall determine the four fundemental solutions (k.2)
¢l . . Qh in such & manner that they are available for appropriate

asymptotic expansions. We find that the fundamental solutions described
by W. Tollmien (ref. 12), "Asymptotic Integration of the Stability Differ-
ential Equation", the asymptotic representations of which are provided
with residual-term estimates, are sulted to the problem. T

In order to establish the connection of these fundsmental solutions
with ours, it is indispensable to discuss first the concept of "friction-
less approximstion.” The quest for solutions of the complete stability
differential equation (1.2) which for oR —» =, together with their
derivatives with respect to y, tend toward a limiting function

lim @(y,aR) = X(y) (4.k)
aR— .

leads to the so-called "frictionless differential equation”

(U - e)(X" - &®X) -U"X =0 (4.5)

which rmust necessarily be satisfied by such limiting functions. If we
want to use the solutions of this frictionless differential equation
for the approximgtion of the solutions of the complete differential -
equation for oR - =, we must not disregard the range of validity of the
boundary-value statements in equation (4.4) in the complex y-plane.
According to W. Wasow (ref. 13), the following theorem is valid with
respect to this: _ =

"Of the four fundamental solutions (4. 2), one even and one odd
sclution can be determined in each case so that with two asppropriate
frictionless solutions X;(y) and ¥o(y) the approximations

9, (y) = ilﬂy) + O<%§> Xl(y) = 0dd function of y ~
' (k.6)
mz(y) = ?é(y) + Oﬁéﬁ) ig(y) = even function of ¥y  —
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in each fixed interior of a double region (I + II) or (II + III) or
(III + I) are valid and become invalid; in each case, in the comple-
mentary third region III or I or II. The same is true for the deriva-
tives with respect to y." (Compare fig. 3.)

The boundaries between .the regions Iz II, and IIT satisfy the
egquation . . -

fymdy=o

—-—

if Yy denotes the "critical point" defined by
U<yk) = c Ré yp <O - (4.7)

For more details regarding the regions I, IT, and ITI see Wasow (ref. 13).

The frictionless differential equation (k.5) has at the critical
point, U(yk) = ¢, a singular point wi@h regard to determinateness. Two

fundamental solutions take the form . L ia N

1]

X () = (v - Vi) * B1(y - i) -

1

B(y - vy) + ﬁ Py-w) . (v~ yk)lnzy - ) (B.9)

Xo(v)

if 21 and 22 denote power series wiih the. beginning

UH

P(2) =1+z - E{Ik—f; «0(z3)  Byz) =1+0(3) (4.9a)

(Compare W. Tollmien, ref. 12, p. 35.) The common radius of convergence.
of these power series is limited either by the radius of f convergence of _
a corresponding series for U - ¢ or by the'next adjacent zero of U - ¢
as a singular point of the differential equation. —
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For the further development it is advisable to introduce a sequence
of functions Bn(n) by the Laplace integral

2
nz+i —= _ n
By(n) = ‘2‘5:1—1 f e 5 . 22 1n 2 + 8)az (k.10)
which is compareble to equation (3.11). In it, € = 0.5772 . . . denotes

the Euler constant. The path of integration B runs, in the manner

indicated in figure 4, in the complex z-plane cut open along (0,-1iw)
from iInfinity to infinity.

The functions Bn(n) satisfy the differential formule

dB,(n)
— - = Bpa(n) (%.11)
and the recursion formula R
1.Bn+5+'q-Bﬁ+l+n-Bn=Pn ()4'12)

in which Pn(n) are the polynomials defined in equation (3.19).

By means of these two formulas all the functions B,(7n) and their

derivatives and integrals can be constructed recursively from the three
basic functions B

By(n) B1(n) By(n) (k.13)

By meens of the representation

(n) A%(~-m*)
B (1) = 2rni %o 0 (h.13a)
n 1)BA%( —n*
T ) L)
(* = conjugate-complex value), the basic functions B, and B, can be

2
reduced to the functions A,. (Compare W. Tollmien, ref. 10, p. 27.)

The significance of the functions B,(n) for our stebility - eigen-
value problem lies in the fact that the function Bl(q), because of
equations (4.11) and (%.12), satisfies the differential equation
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i + T —— =1 — (h.1h)
an’* dn= ' S

which, with the designation "differential equation for the friction ) -
correction," has been introduced as sn essential constituent into the
asymptotic integration of the stability differential equation by

W. Tollmien (refe. 10 and 12).

After these preparations, we turn %o thé_four fundgmental solutions
P> Prys P11 QIV of the complete stability Qiffgrént;al equation _ -
constructed by Tollmien, regerding its pbillty to be expanded asymp-

totically. According to W. Tollmien (ref. 12, p. 77) these four solu-
tions may be determined, with use of the substitution .

e v s ) e o) e

in such = manner that they have in a fixed interior of the n-plane (com-~
plex for reasons of analytic continuatidn) as well as in every fixed
interior of the region II of the frictionless_approximation (compare .
eq. (4.6a)) the following asymptotic representations:

Pr(y) = % (¥) + o(e3) (%.17a)

T i

Prp(y) = Bxlen) + ﬁi » By(en) - €’1:3_1(n);+n_fr 7 1n {]+o€2m )

or in every fixed interior of II co . r(4-17b)
Prr(y) = %(y) +:O(€3) ]
Furthermore, ' - | 4;
Prr(y) = A.1(n) + O(e) in. !n,§ constant - (L.17¢)

is valld. Finelly, there applies, accoréing t;;w.-Waspw;(ref, 1%3),
quotient-asymptotically in every fixed interior of II (compare egs. (4.6))
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U-~c

ly Y
®III(Y): QIv(Y) =~ constant . ( )5/ « exp ﬂidR . J[ JU - c dy
yk .

(4.174)

Corresponding formulas are valid for the derivatives.

For further treatment of the eigenvalue equation (k. 3), we must
express the fundamental solutions @l « e D), used in it by the above

fundamental solutions @I .« . . ¢IV' If for the latter, the representa-

tions (4.17) are used immedistely, and with the residusl terms in each
circle hl < constant for e —0 being valid, the result reads

-

~ _ Uﬁ eg

¢1’2(y) 'ﬁl,2¢III(y) =l+e - U' n(ln e+ 1+8; 2)4-B_l(n) +0{e“1n e,
Uy (0) Uy 1(0) r
k., __ X kg %

J
(k.212)

from the frictionless solutions X; and X,. (Compare egs. (%.9))
Furthermore,

constant

Fs 1, () = Prp(y) + 0 Sl e Ve ). A_,(q) + 0o(e)

(4.21b)
is valid. Corresponding formulas are valid for the derivatiyes. _

If we now write the two eigenvalue equations obtalned in equa-
tion (4.3) as a product of three factors, for instance,

cp3( -1) qu( -1) - W] (-l)_]
I AETRR AT «9355( 1)J

0=D-= [a#‘l.)] 1%1(‘1) -0 - )|
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(8 = arbitrary constant), the zeros of.the two Pirst factors do not
meke a contribution to the eigenvalue . configuration since they are
compensated by corresponding poles of the third factor - unless the
derivative ¢3( ~-1) should disappesr simultaneously. It is therefore —_—

sufficient to find only the zeros of the third factor. After insertion
of the approximations (Lk.21) we thus obtain :

€ .—E.n €+l+Sl 2+BO(T1)J

ae
q,l df}H= U,, + o(1n e) (n=n,)
111 l+e.U}§n(1ne+l+Slg)+Bl(n§]
k
or Un _
€ E.ne+l+SlE+Bo(n)]
+ @ = :
m Jf'ﬂ + 0(e“ln €
l+€—[lne+l+812)+31(ﬂ
(k.22)
with 7 = My = (-l - yk)/e and 8., S, according to equations (k.21a)

from the frictionless solutions. The function w(n) sfemming from a
next-higher approximetion in equation (h 21b) reads

. A_p(n) + £ A(n) - Au(n)

W(n) = F & ey

(k.228)

and may be reduced, by means of the formulas (3.12) and £3 13), to the

three tsbulated basic functions AO’ Al’ A2. . )

How do the eigenvalues ¢ behave if’ in the eigenvalue equa- ) ti
tion (4.22) we let oR —w, that is e - O% Evidently My ‘then tends
ng of the function A (n) By Taylor series expanded
about these zeros, there fallows more exactly

toward the zeros

oA (ny)

. €In e+ 0(e)

WO R ) __ :
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The eigenvalues then behave asymptotically like

c - U(-1) = -u

o A
. EHN—ﬁE' 1_2.@ €®1in e+o(e2) (4.23) |

f1{y) —

with ny from AO(nN> = 0. As & supplement to equations (3.21) we shall
give here a few zeros ™ and values iAe/Alz

w 142 (1) 1 (nn)

_12;12232 + 1. 1.065 -1.686 - 1 . 1.222 For lan > 1
:623 5 1 i : 2:237 té:ZOE t i : 2:251 there spplies
5.5 +1i.ks5 w2k w11 Ao(y) My
A(y) Y2
(L.24)

The remarksble fact sbout the asymptotic eigenvalue formula (L4.23)
is that it is transformed into the corresponding formula (3.26) after
substitution of the velocity profile U =y of the Couette flow, although
the two formulas were derived under completely different assumptions.

The asymptotic eigenvalue formuls (4.23) is already so grestly
reduced that it no longer permits a distinction of the eigenvalues ¢
which are associated with even or odd eigen functions. For this, we
rmust go back to the more exact formula (4.22) in which the character-
istics "even" or "odd" of the eigenfunctions sare teken into consider-
ation by means of the constants Sl and Se, to be determined "without
friction.”

We have used the eigenvalue equation in the form (4.22) also for
the numerical calculation of the eigenvalues c¢ in the examples treated.
We selected as examples the two-dimensionsl Poiseuille flow and e flow
with an inflection-point profile. We represented the variation of the
four lowest elgenvalues as functions of R for a fixed value of a
in figures 5 end 6. The numerical calculation itself is - after reduc-
tion of the nonalgebraic elements contained in the elgenvalue equation

to the three tabulated basic functions AO, Al, A2 and to the fric-

tionless solutions - a problem involving numericel methods, the details
of which cannot be discussed here. We shall mention only the following
approximate representation of the frictionless constent So
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.8 =ha.a?+0(1) for a1 with A==
. | - ] (U - c)%ay
-1

(k.25)

(Compare W. Tollmien, ref. 11, p. lOQ), whizh msy be applied advanta- .
geously for small values of a.

The subscripts for the eigenvalues ¢ obtained from equatlon (4 22),
in the sense of a continuous connectidn witﬂ the 1limiting case oR — O,
remain an open problem here. In the range of velidity of equation (4.22)
alone, & generally valid cholce of subscripts according to the rule
Im(cn*l) Im(c ), that is, according to increasing damping, cennot in

principle be carried out, either. The zeros in equation (4.23) can be

ordered according to the increasing imaginary part, but the- Im(c )
curves may penetrate one another if € 1s changed.

5. THE FRICTIONLESS EIGENVALUES WITHIN fﬁE LIMlTING CASE. aR — o

Determination of the Excited ﬁlgenvalﬁee

let the approximation (4.6) by means of_the frictionless solutions
be suited either to the double region T + II~£eompare fig. 3) or to the
double region II +-III whereby the logarithmic term is always uniquely
determined in the frictionless solutions. Applylng the gpproximations
(k.17), we then obtain, by waey of the eigenvalue equations (4.3), eigen-
values ¢ which, for oR — =, tend toward the so-called "frictionless

eigen values" (O)(a) which are defired by“the boundery condition
l( l) 0 or X(-1) =0 of the odd or evéil frictionless solutions

Xl, x2 The following general statements mey be made regarding these

frictionless eigenvalues, limited by the range of valldity of the
boundary-value expressions (4.6), accorfing to W. Tollmien (ref. 11),
partly on the basis of the "Rayleigh- Tollnden‘theorems."

"For velddity proflles without turning points, no éXcited friction-
less eigenvalues are possible. The approximation (4. 6), associated
with the demped frictionless eigenvalues, must always take place in the
interior of the double region I + II."

"For inflection-point profiles, there always exist excited friction-
less eigenvalues associated with an eved eigenfunction.”
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Beyond these general statements, frictionless eigenvalues associ-
ated with an odd eigenfunction were not found in any of the examples;
neither did we find eigenvalues such that the associated approxims-
tion (4.6) would have taken place in the interior of the double region
IT + ITII. As examples, we chose the two-dimensional Poiseuille flow &as
representative of a profile without an inflection point, and the inflection-

point profile U = QJE - l) + (2 - JE) X cos %f y. The frictionless -

eigenvalues ¢, found only associated with an even eigenfunction, are
represented in figures 7 and 8. The range of existence of these eigen-
values is always given by an intervel O < o S constant. For the fric-
tionless eigenvalue c, Tollmien (ref. 11, p. 100) has set up the
following approximate formlas: - - —

e U'(-1) Uy
/; (U - ) Bay (v%)

We now seek the connection between the frictlionless eigenvalues
and those discussed up till now. The closed solution, in the case of
the Couette flow, cannot give an answer to this problem because the
frictionless eigenvalues in question do not exist there at all. How-
ever, it is possible to insert the frictionless eigenvalues into the
equation (4.22) and thus to interpret them as a limiting case within
the eigenvalues (eq. (4.23)).

a =a.(cr) = with ) U(yK) =c,

(5.1)

Let us, therefore, perform on the elgenvalue equation (4.22) the
limiting process oR —», that is, € —» 0 for constant (—l - yk) = en_y;

the justification of this procedure is based on the equation preceding
(k.22). By means of the asymptotic formulas (3.16) there then follows
for oR —»w -

U.
1+ (-1 - Vi) U—E{ln(-l - Y )+ 31,2} =0

These are, however, precisely the first Taylor terms of the frictionless
eigenvalue equation X7(-1) =0 or Xy(-1) =0 which would be obtained,

according to the significance (equation (4.21a)) of -Si, " 85, in the case
of Taylor expansion in the sense of the series (L4.9). T
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On the basis of this finding, the determination of the excited
eigenvalues (Imc > O) can be simplified. Since, according to the results
of the second section, excited eigenvalues can appear only within the
first eigenvalues of finite number ahd for sufficiently large values
of R, it suffices to examine equation (L4.22) with respect to excited
eigenvalues. For this, the following alternative is valid: Excited
eigenvalues can be (approximstely) determined either_ by the friction- o
less boundary-value problem in combin&tion with sufficiently large values -
of R, or they lie in a neighborhood of c.= U(-1) and can be determined
by means of one of the equatioms (4.22) or (4 23) as _associated with
finite values of 7 -1 . -

As follows from this for sufficiently large values of R, but as _
was confirmed in the examples for the smaller values of R also, the _ .
greatest excitation for inflection—point proflles is .always combined with
the frictionless eigenvalue or its c¢onbinmation toward smaller R
values. Hence, there follows the well-known fact that, in the case of
turning-point profiles, the stability behavior may be concluded even
from the frictionless differential equation alone. ILet us compare to _ )
this the calculation of the frictionless eigenvalues of G. Rosenbrook .
(ref. 9) for an inflection-point profile which he had measured in 8 diver-
gent channel. : P

b

6. FORM OF THE EIGENFUNCTION. THE INNER FRICTION IAYER.

THE VARIATION OF A DISTURBANCE WITH TIME.

In order to judge the variastion with time of a disturbance, we shall
decompose the latter into partial waves of The type in equation (1.1).
It is then necessary to know the veriation of the amplitude o(y) over
the channel width. We consider here only the case of very large values
Of QR- o ’

For the Couette flow, there follows, by equation (3.4), in the
notation of equations (3.6), (3.9), and (3.15) for € << 1, that is,
aR >> 1, as approximate expression for the. eigenfunction

2ni
o(y) = F(q) - F(qe 3 (6.1)
with : — ' -

A-l( T]) - A_l(n_l)

Fla) = Aa(m) - Ai(ny) (6.2) .
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The boundary conditions @(+l) = O are identically satisfied; the

remaining boundary conditions are identical with the eigenvalue equa-

tion (3.24). As follows even from the differential equation alone, I ——
o¥(-y) 1s an eigenfunction associated with the eigenvalue -c*. We »
calculated accordingly for a =1 and R = lO3 the eigenfunction - -
associated with the eigenvalue ¢ = -0.7 - 10.3 and represented it in

figure 9.

It is striking in this figure that the essentiael changes of the
eigenfunction occur in a lsyer -1 < v < Yo which could be defined

perhaps by the angle space arg 7 § rc/6 of the strong increase of .
A_l(q). In the varisble y this "inner friction laeyer" is, according

to equations (3.6) and (3.26), approximately

1Sy S -l+€(—Re ny+ (3 In qN) €e<< 1 (6.3)

This representation shows that the width of the layer increases with

growing order n of the elgenfunctions; the magnitude of damping”™ — - - —
increasing simultaneously. The velocity of the associated disturbance

wave 1s epproximately equal to the velocity of the basic flow in the

center of the layer. Furthermore, the thickness of the layer tends with

€ towerd zero. The physical interpretation of this situstion signifies
according to Hopf (ref. 5, p. 57) "that any arbitrary disturbance for

large values of R 1s daemped in such a manner that, finally, disturbances
seem t0 emanate only from the wells, without mutual interference - a

behavior which reminds one of frictionless fluids.”

For more general basic flows, Tollmien (ref. 12) set up an approxi-
mate expresslion for the eigenfunction; in it, one can recognize again,
in the case of damping, an "inner frietion layer" which would have to
be defined by the angle space = 6 s 8rg 1 < 5:t/6 of the great changes
in incresse of B_y(n) or A_;(n). In the verieble y, this layer is,

according to equations (k4.16), 7

c,. +\]3ciS

-1 + ————

Ur(-1)

o - e |
y§_1+_f?(_:\g_i € -0 (6.9)

whence we obtain for the higher eigenvalues, according to equation (h.23),
again the formula (6.3) for the Couette flow. If, however, frictionless
demped eigenvalues c¢ 1in the sense of section 5 exist, the inner fric-
tion layer, expression (6.9), retains also for the limiting process

€ -0 &a finite thickness and a finite distance from the wall. We calcu- o~
lated, for this latter case, the even eigenfunction in the exsmple of
the Poiseuille flow, for a =1 and R = 7.7 X 105, and represented 1t

-
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in figure 10. The eigenvalue ¢ = 0.178 = 1 X O. ol+9' hardly deviates
from the frictionless eigenvalue associated w1th a = l.

Comparing the inner friction layer w1th the bouﬂdary layer, we may
say that the boundary layer represents that flow region in which the
behavior of the laminar basic flow ip decigively influenced by the inner
friction, whereas the inner friction layer indicates the region where
the disturbance is decisilvely subject to the influence of the frietion,

since outside this layer the disturbance can be determined without
friction.

Translated by Mery L. Mahler C e
National Advisory Committee . B
for Aeronsutics ) T
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Figure 1. - Path of integration A in the complex z-plane.

Cr
+1

o 1 3/ 4/5/¢/7/8/91011
I

Figure 2.~ Rectilinear Couette flow. The twelve lowest eigen-
values c ‘as functions of R for e = 1.
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Figure 4.~ Path of integration B’ in thé complex z-plane cut open
along (0, ~ie).
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Figure 5.- Two-dimensional Poiseuille flow. The four lowest eigen-
values c as functions of R for « =0.87.
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Figure 6.~ Inflection-point profile. U= ( \J2 - 1)_: (Zj-'\]ﬁ)cos v %”T_

The four lowest eigenvalues c ag functions of R for a« =0.5.
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Figure 7. - Two-dimensional Poiseuille flow. The frictionless eigen-
value c¢ associated with an even eigenfunction, as a function

of «.
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Figure 8.- Inflection-point profile. U = (\[2 - 1) + (2 - \]E)cos y %

The frictionless eigenvalue c associated with an even elgen~-
function, as a function of «a.
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Pigure 9. - Rectilineag Couette flow. Eigenfunction ¢ '(y) for
a =1 and R=10° assoclated with the eigenvalue

¢ = -0.70 - 1 x 0.30. - -
(Pil =
(0] -

Figure 10.~ Two-dimensional PgiSeuille flow. Eigenfunction o¢'(y)
for ¢« =1 and R=7.7x 10° assoclated with the eigenvalue
c=0.178 - i x 0.049. ! = = -
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